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CMSC 426

Principles of Computer Security

Lecture 11

Introduction to Cryptography (continued)
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Last Class We Covered

 Introduction to crypto

 Definitions

 Ciphers

 Block ciphers

 DES

 3DES

 AES

 Confusion and diffusion

 Parallelization
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Any Questions from Last Time?
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Today’s Topics

 Block cypher modes

 Asymmetric encryption

 Diffie-Hellman

 RSA

 Math (for real this time)
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Modes of Operation
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Modes of Operation

 Block ciphers themselves are only good for encrypting a block

 Repeatedly applying a block cipher to larger amounts 

of data requires a mode of operation

 Some modes require an Initialization Vector (IV) to get started

 Different modes of operation exist for different purposes

 Efficiency

 Parallel encrypt and/or decrypt

 Encrypting a stream
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Notation

 EK(P)

 Encryption of plaintext P with key K using an arbitrary block cipher

 DK(C)

 Decryption of cipher C with key K using an arbitrary block cipher

 Arbitrary block cipher

 For example, DES, 3DES, or AES
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Electronic Codebook Mode (ECB)

 Simplest and most naïve mode of operation

 Simply encrypts/decrypts each block with the same key

 Pros:

 En/decryption can be performed in parallel

 Cons:

 Requires padding of plaintext

 Low diffusion

Image taken from https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

Ci = EK(Pi)

Pi = DK(Ci)
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Quick Note: Padding

 Padding involves adding garbage/filler to the end of the 

plaintext so that it perfectly fits within a block size

 Downside is not the space “wasted” on the extra text

 Rather, padding can allow an adversary to examine and learn 

things about the plaintext by examining the padded ciphertext

 Not something we’ll go into in depth in class

 Read about “padding oracle attacks” for more information
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Cipher Block Chaining Mode (CBC)

 Each block of plaintext is XORed with the previous 

ciphertext block before being encrypted

 Uses an initialization vector for the first plaintext block

 Pros:

 Much better diffusion

 Cons:

 Requires padding

 Can’t parallelize encryption

 But can parallelize decryption – why?

Ci = EK(Pi ⊕ Ci-1)

Pi = DK(Ci) ⊕ Ci-1
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Cipher Feedback Mode (CFB)

 Each block of plaintext is XORed with the previous 

ciphertext block after the previous ciphertext is re-encrypted

 Plaintext never directly “touches” the encryption algorithm

 Uses an initialization vector for the first plaintext block

 Block cipher is now a “stream cipher”

 Uses the block cipher as a “key generator”

 Digits can be encrypted one at a time,

which means no padding is necessary

 Encryption cannot be parallelized

Ci = EK(Ci-1) ⊕ Pi

Pi = EK(Ci-1) ⊕ Ci
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Counter Mode (CTR)

 Also works as a stream cipher

 Requires a pseudo-random seed, S, to function

 For each successive en/decrypt, the seed “counts” up by one

 Pros:

 Encryption can be parallelized, as seed simply counts up

 Decryption can be parallelized as well

 Plaintext does not need to be padded

 Cons:

 ???

Ci = EK(S + i -1) ⊕ Pi

Pi = EK(S + i -1) ⊕ Ci
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Comparison of Modes of Operation

1 Encrypting structured or repeating plaintext results in repeating cipher blocks

Parallel 

Encrypt

Parallel 

Decrypt

Padding 

Required

Stream 

Cipher

Initialization

Vector

Repeats 

in Cipher1

ECB ✔ ✔ ✔ ✔

CBC ✔ ✔ ✔

CFB ✔ ✔ ✔

CTR ✔ ✔ ✔
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Enc. Algorithms of Modes of Operation

Images taken from https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
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Diffie-Hellman
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Shortcomings of Symmetric Encryption

 Symmetric key must remain secret to be secure

 But how do you communicate what the secret key is?

 Without already having a secret key?

 ???

 You can’t!

 Need some way to share keys over an unsecured channel
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Diffie-Hellman Key Exchange

 Named after Whitfield Diffie and Martin Hellman

 It is a way for two parties to

 Use insecure communication to

 Agree on a cryptographic key

 Without anyone else being able to figure out what it is

 Neither party “chooses” the key, but that doesn’t matter

 They just need the same one

 How to achieve this?

 Math!
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Basic Diffie-Hellman Algorithm

 Choose two non-secret values p and g

 p is prime

 g is generator, a primitive root modulo p (don’t worry about this right now!)

 Each party

 Chooses an integer Y in the range 1 to p - 1 (inclusive)

 Calculates y = gY % p and transmit y across the clear channel

 Use the other party’s transmitted integer (x) to calculate K = xY % p

 Both parties now have the same value K, for a symmetric key
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Example Diffie-Hellman Algorithm

 Alice and Bob agree to use p = 37 and g = 11

 Normally they would use large numbers, but this is an example

 Alice chooses the integer A = 2, Bob chooses B = 9

 a = gA % p a = 112 %  37 a = 10

 b = gB % p b = 119 %   37 b = 36

 Over the clear channel, Alice transmits 10 and Bob transmits 36

 Each now calculates the key K

 Alice: K = bA % p K = 362 % 37 K = 1

 Bob:  K = aB % p K = 109 % 37 K = 1
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Diffie-Hellman: The Math

 Alice calculates a = gA % p

 Bob calculates  b = gB % p

 They transmit these values of a and b to each other, then…

 Alice calculates K = bA % p same thing as (gB % p)A % p

 Bob calculates   K = aB % p same thing as (gA % p)B % p

 Both of which simplify to gAB % p

 (Because ~*~math~*~)
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Diffie-Hellman Security

 Only p, g, a, and b are transmitted in the clear

 So any attacker could have those

 But to calculate K, they also need either A or B

 Which they could solve for with the formula logg B % p

 But this is really hard to do when p is 600 digits long

 (For now – if this changes, we’re all in deep trouble.)

 Private keys (A and B) should also be large numbers

 Makes them difficult to calculate for an attacker, or even 

for the other legitimate person in the communication
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RSA (not a real acronym)
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RSA Overview

 RSA stands for Rivest, Shamir, and Adleman, its inventors

 Is not necessarily a method for key exchange

 Is a form of asymmetric encryption

 Uses two separate keys: public and private

 Public key is available to anyone and everyone

 Private key must be kept secret



All materials copyright UMBC, Dr. Katherine Gibson, and Zack Orndorff unless otherwise noted 24

RSA Key Generation Algorithm

 Pick two secret prime numbers, P and Q

 With those values, calculate n = P * Q

 Choose a valid public exponent e

 Software today uses 65537 (0x10001) to make calculations faster

 A valid e is not a factor of n, and must be less than (P-1)*(Q-1) (~*~math~*~)

 Calculate a private exponent D

 Such that e is congruent to D % (P -1) * (Q -1) (more ~*~math~*~)

 Public key components are n and e

 Private key components are n and D (normally save P and Q too)
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Using RSA Keys

 Encryption

 The plaintext P is converted into an integer M

 (Don’t worry about this for now)

 c = M e % n (remember, e and n were our public key components)

 Decryption

 M = c D % n (remember, D and n were our private key components)

 Mathematical proof

 Outside of the scope of this class (number theory, etc.)

 Read the paper if you’re really interested
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RSA Example: Key Generation

 Key generation:

 Choose P = 43 and Q = 59

 Calculate n = P * Q n = 43 * 59 n = 2537

 Choose e = 67

 Calculate D = 1927

 Public key: n = 2537, e = 67

 Private key: n = 2537, D = 1927
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RSA Example: Encryption/Decryption

 Now, someone wants to send you a message M = 42

 To encrypt it, they use your public key: n = 2537, e = 67

 c = M e % n c = 4267 % 2537 c = 1332

 This ciphertext of 1332 is sent over a clear channel

 After receiving the message 1332, you want to read it

 To decrypt, you’ll use your private key: n = 2537, D = 1927

 M = c D % n M = 13321927 % 2537 M = 42
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RSA Security

 An attacker has access to only n and e

 They need access to D to have a complete private key

 If they could factor P and Q out of n, they could calculate D

 Fortunately, calculating the large primes that are the only 

factors for a large number is hard

 The larger the primes, the harder it is to factor

 Fun fact: the largest known prime is 277,232,917 − 1

 It has 23,249,425 digits
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RSA: Digital Signatures

 Encryption and decryption are inverses of each other

 If something is encrypted with the private key, 

it can be decrypted with the public key

 What does this allow us to do?

 State “only this person could have encrypted this”

 This is part of something called a digital signature, and is 

meant to prove the message came from a specific individual

 Digital signatures are more complex than just this; 

we’ll discuss the details next time
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(Pseudo)-Random Number Generation

 rand() is not an acceptable (pseudo) random number 

generator for anything that has an actual purpose

 If you want something statistically viable, you need to use an 

actually good pseudorandom number generator (PRNG)

 If you’re going to use the numbers for security-related 

purposes, use a cryptographically secure pseudorandom 

number generator (CSPRNG)
 If you don’t know if it’s a CSPRNG, it probably isn’t
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Quantum Computing

 If a sufficiently large quantum computer is ever built:

 RSA and Diffie-Hellman are completely broken by 

an algorithm called Shor’s algorithm

 The bit length of symmetric ciphers is effectively halved
 If it would previously require 2128 computations to crack something, 

it would only require 264 quantum computations
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Announcements

 Lab 2 is due Thursday night

 Paper 1 will be coming out soon

 Exams are graded and available for pickup


